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Scattering at a J unction of Two Waveguides
with Different Surface Impedances

CORRADO DRAGONE, SENIOR MEMBER, IEEE

Abstract —We consider a junction of two cylindrical waveguides and
derive the scattering matrix when a single mode is incident in one of the
two waveguides. We are interested primarily in the case of two corrugated
waveguides with different longitudinal impedances, but the analysis applies
also to waveguides with nonzero transverse impedances. It is shown that,
under certain general conditions, the infinite set of equations specifying the
junction scattering coefficients can be solved exactly by the residue-caleu-
lus method. Very simple expressions are then obtained between the scatter-
ing coefficients and the propagation constants vy, and y; of the modes in
the two waveguides. These expressions, obtained previously only in special
cases, are direct consequences of certain simple relations derived here for
the coupling coefficients between the modes of the two waveguides. In
those cases in which the scattering coefficients cannot be determined
exactly, we determine them approximately by a perturbation analysis.

I. INTRODUCTION

E CONSIDER a cylindrical boundary parallel to the

z-axis and assume that the two regions z >0 and
z <0 are characterized by different boundary conditions.
In either region, it is assumed that the surface impedances
for the longitudinal and transverse currents on the walls
are given parameters independent of z. This accurately
represents, for instance, a junction [1], [2] between two
corrugated waveguides with a large number of corrugations
per wavelength. The scattering matrix for this junction,
when a mode is incident from one of the two waveguides,
was derived in a previous article [1] by a perturbation
analysis, assuming the difference in surface reactance be-
tween the two waveguides is small. Here, we remove this
restriction and show that if only one mode can propagate
in each corrugated waveguide then the reflection coeffi-
cient p; for this mode has its magnitude given exactly by
the same expression derived in [1].

The treatment applies not only to corrugated wave-
guides, but in general also to waveguides with nonzero
surface impedances in the longitudinal direction. If the
difference between the boundary conditions of two wave-
guides is small, then the junction scattering coefficients can
be derived straightforwardly by a perturbation analysis
similar to the one of [1]. If the difference is not small, then
in most cases of practical interest the scattering coefficients
can be derived exactly as in [3], [4] by the residue-calculus
method.

In fact, it is shown that, under certain conditions, the
junction considered here is described by the same equa-
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tions obtained previously for certain other discontinuities
[3]-15]. This equivalence is a consequence of certain simple
relations derived in Section II for the coupling coefficients
between the various modes of the two waveguides. Because
of these relations, a simple solution is found to exist for the
scattering coefficients, which are then simply related to the
longitudinal wavenumbers v, and v/ of the various modes
in the two waveguides. One thus obtains the same expres-
sions derived in [6] for a parallel-plate waveguide and in [7]
for a circular junction between a smooth and a corrugated
waveguide, treated in [7] by the Wiener-Hopf technique.
The results of this article are needed to determine accu-
rately the input reflection p; of a corrugated feed [1], [8],
and to design a suitable transformer to minimize p, as in

91
Geometric Interpretation of a Junction in Hilbert Space

This theory can be summarized as follows. In general,
inside a waveguide, the field can be represented as a sum of
modes, each characterized by d/dz = — y, where y denotes
the longitudinal wavenumber of the mode. In the Hilbert
space IT of the problem under consideration, each mode
specifies a direction. Thus, a complete set of modes satisfy-
ing given boundary conditions specifies a coordinate sys-
tem, ie., a reference frame, whose orientation in II is
determined by the boundary conditions. In Section III, we
find how the orientation of a frame is affected by the
boundary conditions. Thus, we consider in general two
modes, satisfying different boundary conditions. Their
scalar product in II is determined by a surface integral
over the region S occupied by the waveguide in the x, y-
plane. We show that this integral, given by the expression
(e, h")+(e’, h) of (15), can be reduced to the form

D

Y=y

where D is a contour integral which, under certain condi-
tions, is separable into a product of two factors, each of
which is determined by one of the two modes. Then, if the
two modes have indexes n and i, respectively

b _DbD

Y=Y ¥
and an exact solution for the junction problem is readily
obtained, for the following reason.

The modes that propagate in a waveguide can in general

be divided into two groups, propagating in opposite direc-
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tions. Therefore, the Hilbert space Il can be decomposed
into two subspaces IT, and IT_, of the same dimensional-
ity, corresponding to the two directions of propagation.
Negative labels will be used throughout the article for the
modes propagating in the negative z-direction. The above
decomposition obviously depends on the orientation of the
particular coordinate system under consideration. That is,
a rotation applied to the reference frame will change the
decomposition. Now, the electromagnetic field at a junc-
tion (for z = 0) between two waveguides can in general be
represented by a vector & in II. Since the two waveguides
have different boundary conditions, their modes give rise
to different decompositions of II. Let IT,, II_ and II7,
I1” denote the two decompositions, with the prime denot-
ing the waveguide for z> 0. In the problem considered
here, the projections of & onto II, and II” are given,
since they represent the modes propagating towards the
junction. The problem is to determine the projections of &
onto I1_ and IT,, which represent the scattered modes. In
general, since IT,,II_,IT;,II” have the same dimen-
sionalities, the two given projections of & are sufficient to
determine &. Here it is assumed that the junction is excited
from z <0 and, therefore, &7 = 0. Then, by requiring that
the component of & with respect to the ith mode of IT”
be zero, one obtains (38), whose solution is well known in
the important case where D, , are separable. One then
obtains (50), assuming that only one mode is incident from
z<0.

In this article, the above results are derived in a very
general way, without a detailed knowledge of the proper-
ties of the two waveguides, or of the shape of their
boundary. Of greatest interest in practice [8]-[10] is the
problem of a waveguide filled with homogeneous material,
but the results of Sections III-V apply in general, without
this restriction. In particular, they are useful in the study of
optical fibers, as shown in a future article. In Section IV, a
very simple solution of (38) is derived in the important case
where the two waveguides boundary conditions are only
slightly different. Then the angle of rotation ® between the
two reference frames determined in IT by the modes of the
two waveguides is small, and & can be determined by the
following argument.

Since © is small, the difference 8& between &7 and &_
is small.! Furthermore

06=6" —(6-6,)
whose projections onto IT_, II” are
8¢,=(62), 86 =(&,)..
But 8&” =646 _, with error of order two in ©, and we
conclude that
E=& . +&. —(&,.) —(&.),.
In words, &€ can be derived with error of order two in © by

simply removing from & + & the projections of &, &
in 117,11, respectively. In the particular case of interest

1Similar considerations apply to €7, — &,.
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here, &7 =0, since only one mode is incident from z < 0.
Therefore, & =&, —(&,)., and the reflected and
transmitted modes are simply given by

¢_=(6.). &, =(8, ),+ (1)

from which one can derive straightforwardly the scattered
modes; the result is (41), (42). Of special interest is the
reflection coefficient p, for the incident mode. We shall see
that, only for certain waveguides

1“71
1+

o1l =

and the required conditions will be given in Section V. The
above perturbation analysis is important, not only for its
simplicity, but also because an exact treatment is not
possible in certain cases, for instance when all the walls of
a rectangular waveguide are corrugated as in [10].

1I. BouUNDARY CONDITIONS

The geometry of the problem is illustrated in Fig. 1. Two
cylindrical waveguides are joined at z = 0 along the closed
curve C defining the cylindrical boundary of either wave-
guide. At the boundary, we introduce unit vectors v and 7
representing, respectively, the outwardly directed normal
and the tangent, given by

T=i, XV

i, being a unit vector in the z-direction. Inside the
boundary, the medium is assumed to be independent of z,
but it is otherwise arbitrary. The boundary conditions for

z < 0 are assumed to be in the familiar form

E,=jXH, H,=-jYE,

(2)

involving the tangential field components in the 7, z-direc-
tions. The two parameters X and Y specify the surface
impedances E, /H, and — E, /H, at the boundary. They
are assumed to be different for the two waveguides, and a
prime will be used to designate their values for z > 0.

It is sometimes convenient to modify the definition of
X,Y as in [1] by replacing X,Y in (2) with XZ,,Y/Z,,
where Z; =iy /€,. Then, the same substitution must be
applied throughout this article.

III. CouprLING COEFFICIENT BETWEEN TwO MODES
Consider two modes E, H and E’, H’ and let
e(x,y)e”™  h(x,y)e™ (3)
be the transverse parts of E, H. Let
e.(x,y)e™  h(x,y)e ™ 4)

denote E,, H, and let a similar notation be used for
E’,H’ In the following section, we shall see that the
equations specifying the amplitudes of the scattered modes
in Fig. 1 have coefficients given by the expression

(e,h’)+ (e, h) (5)

where the notation (e, h”) is used as in [1] to denote, over
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X, Y

Fig. 1. TJunction of two waveguides with different surface impedances.

the junction area S, the integral

(e,h") = f [ (e X h’)-i,dxdy. (6)

In [1], this surface integral was reduced to a contour
integral assuming real values of y2 and y’*, but the same
derivation applies for complex values as wcll In fact, the
two modes satisfy the condition [4]

v-(ExH'—E'xH)=0. (7

Decomposing the operator -V into its transverse and
longitudinal components

v=v,+(y+7)i, (8)

integrating (7) over S and then using the divergence theo-
rem, one obtains as in [1]

| Y ©
where C is the sum of two integrals
. C=M-N (10)
where -
M= (eh;—eh,)dr (1)
¢ .
N= (e, —eth,)dr (12)
C .

An important property of these two integrals is obtained
by reversing the direction of propagation of one of the two

modes. For instance, let the mode with wavenumber y be

replaced in (9)-(12) by the ‘mode characterized by wave-
number — ¥ and transverse field distributions

' e(x,y)e” —h(x,y)e”.
The new mode is obtained by the substitution
€5 h,

(13)

y,e,h,ez,hz—*—y,e,—h, (14)

which changes the sign of N without affecting M. Thus, (9)

is changed into
' D

(e, 1)+ (', ) =—2— (1s)
Y-
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where
 D=M+N. (16)
Using (9), (15), one can determine (e, k")
(e, )= L2EYY (17)

,Y/2 _ .YZ
These basic expressions are direct consequences of (7).
They only assume that the two modes satisfy Maxwell’s
equations with wavenumbers v, v’ in the z-direction.

We now let e be the nth mode obtained in Fig. 1 for
2<0, and let &’ be the ith mode for z > 0. Then, taking
into account that e,, h, in (11), (12) must satisfy the
boundary conditions (2), we obtain

, M FN . )
(e,,n;)¥ (el h,) = —N (18)
. Yi iYn
where

Mn,i=_j¢(X’_X)hznh;th (19)
C

Nyi=— P (Y’ =Y)e, el dr (20)
C

We notice that

M,,=N,;=0, forX’'=X,Y'=Y (21
and therefore, from (18), (20) by letting X’, Y’—> X,Y, we

obtain the orthogonality relations
(e,,,h,-)—O, if ‘}’,,#:iYi- (22)

If X, Y and X',Y’ are independent of 7, then X’ — X and
Y’—Y can be taken out of the integral signs in (19), (20)
and, if there is no degeneracy, from (18), (20) we obtain

2j(e,, h,) _((?yn) ¢h (37,,) ¢,e3ndcr
C

(23)
which implies a simple relation between the partial deriva-
tives of v,.

Notice, if a particular wavenumber v is degenerate, the
corresponding modes are not uniquely defined. Then, two
independent modes are not necessarily characterized by
(e,, h;)=0. However, all modes belonging to a degenerate
y can always be represented in terms of a set of modes
satisfying the condition

(€,sh;)=0, (24)

which will be assumed from now on. Then, one can show
(see Appendix I) that

fornaéi

(e,,h,)#0. (25)
Taking this into account; one finds
(e, h;)+(h, e)=0, forn#i. (26)

Notice the condition (e, k;) =10 is not satisfied for v, =
~ v,, as can be seen taking into account the transformation
(14). Condition (26), on the other hand, is satisfied in all
cases, including y, = — ¥,. Thus, the appropriate definition
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which should be used for the scalar product (or coupling
coefficient) of two modes is given by (15), not (17), if both
senses of propagation are considered, as in the next sec-
tion.

If the medium is lossless, expressions similar to (15)-(23)
can be derived by replacing E’, H’ in (7) with the complex
conjugates of E’, — H’. One then obtains from (17) the
coefficient (e, h/*) used in the perturbation analysis of [1].
Either one of the two coefficients can be used to determine
the junction scattering coefficients (in the absence of losses,
see Appendix I). However the derivation is simpler using
(e,, b)), because (17) involves vy, in place of y/* appearing
in the expression for (e,, h}*). If the medium is lossy,
(e,, k) is the appropriate coefficient, not (e,, h;*). For
n=i, the latter coefficient is needed to determine the
power carried by the nth mode. However, it is shown in
Appendix I that, if both the medium and the boundary are
lossless, one can always choose the amplitude of each
nondegenerate mode with imaginary y so that both e(x, y)
and h(x, y) are real, in which case (e, k) is real.

The relations derived so far are very general. In practice,
of greatest interest are circular and rectangular waveguides.
Then, in most cases the scattered modes have at the
boundary the same 7-dependence of the incident mode. As
a consequence, the coefficients M, ; dependence upon the
indexes n, i is separable, so that M, ;= M, M/, and this is
true also for N, ,. For circular and rectangular waveguides,
the wavenumbers y and the coefficients M, N can be
derived as shown in Appendix II. Notice that separable
coefficients M, ; and N, ; do not necessarily imply separa-
ble C, ;, since

Cn,t = CnCi’ (27)

requires an additional condition: M, ,=0, or N, ,=0, or
M, .= N,

n n
IV. EQUATIONS FOR THE SCATTERING COEFFICIENTS

Now consider the field E, H at the junction of Fig. 1
and assume that a single mode is incident from the left in
Fig. 1. Let E,, H, denote the transverse field components.
To determine the amplitudes of the reflected and
transmitted modes, we expand E, and H, on either side of
the junction in an infinite series of modes, and then require
continuity of E, and H, at the junction. For z <0, repre-
senting E,, H, in terms of the modes of the waveguide
occupying the region z <0

-0
E =Aee "W+ Y, Aee "’ (28)
n=-1
- 00
H=Ahe "+ Y Ahe " (29)
n=-1
where
Aee” " Ahe

are the transverse field components for the nth mode and
n=1 corresponds to the incident mode. Throughout the
article, the wavenumbers vy, with positive index will corre-
spond to modes propagating in the positive z-direction,
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and we shall adopt the convention
(30)

e,=e, Y=Y
which implies

(31)
For z > 0, representing E,, H, in terms of the modes oc-
cupying the region z >0

0
W s
=1

(32)

0
H,= Y Alhle ", (33)
1=1

Taking into account the orthogonality relations (26), then
(32),(33) give forz=0

(E.h))= (e, H,)=Ai(e/,h])  (i>0) (34)

and therefore
(E.h))—(ef, H)=0 (i=1,2,---) (35)
(E,.h;)+ (e H)=24,(e/,n]) (i=1,2,---).
(36)

The former condition is a direct consequence of the partic-
ular form of (32), (33), which does not contain modes with
negative indexes, since the waveguide z>0 is free of
sources. Otherwise, if E, H for z > 0 contained modes with
negative indexes, one would have to replace (35) with

(E.h)~ (e, H)=24"(e/,h}) (i=12,--")
(37)
whereas (36) would not be affected. Notice that either one
of (36), (37) can be obtained from the other by replacing i

with — i, taking into account that e/=e’ , h]=—h".

Substituting (28), (29) in (35) we obtain
D
A, —==0 (38)
n Yy~

where n=—1, 1, 2, etc,, and D, , is obtained by applying

(15) to the two modes e,, b, and e, h. Similarly, from
(36)

(i=1,2,"')

C .
YA ,—==24(e/, b)) (i=1,2,---) (39)
" Y+,
where n=—1, 1, 2, etc., and
Dn,i=C—n,t=Mn,z+Nn,t' (40)

In the important case M =0, the above expressions are
analogous to those derived in [1], the main difference being
here the appearance of vy, in place of y/*, as a consequence
of the coefficient (e,, k) used here in place of (e,, h.*).

Since the incident mode is assumed to be given, the
coefficient 4, in (38), (39) is known. The unknowns are the
coefficients 4_,, A; with positive n, i. In the following, a
one-to-one correspondence will be assumed to exist be-
tween the modes in the two waveguides, and

Y Y, for X', Y'— X,Y.
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Then, (38), (39) can be solved approximately by introduc-
ing a large constant N and neglecting all modes with
indexes larger than N. From (38) for i< N, one then
obtains N equations which can be solved for the N un-
knowns 4_,;, A_,, etc. Similarly, (39) can be solved for
A;. We shall see in Section V that, by letting N — o0, one
obtains in most cases the correct solution as expected. In
certain cases, however, it may happen that the expressions
obtained for N — oo are afflicted by relative convergence
(see [3], [6]), in which case the solution may not be unique
and in order to obtain the correct solution and modes must
be properly indexed as shown in [3].

Solution when X' — X and Y’ —Y are Small

If both X’'— X and Y’—Y are small then the incident
field is only slightly perturbed by the discontinuities § X’ =
X’— X and 6Y’=Y’—7 and (38), (39) can be solved as in
[11, [8]. In fact, then all scattered amplitudes except A are
small and, furthermore

C, =0,
in view of the orthogonality relations (26). As a conse-

quence, only two terms, those for n=—1, i neced be
considered in (38), and from (35) with / = n one obtains

form+1i

A—n ~ _Al (el’hn)_(en’hl) . (41)
(en,h;,)+(e,’,,h,,)
Similarly, from (36)
A;zAl (el’h1)+(ei’hl). (42)
2(ef, by)
If 8X=0 or 8Y=0, then for n=1
A_1=iY1—-Y1A1 (43)
1+ 7

which should be compared with the exact expression de-
rived in the following section, assuming D, ;= D,D;. An
important application of (41), (43) is obtained considering
a rectangular waveguide with all four walls corrugated as
in [10], since then the junction cannot be treated as in
Section V. Then, an approximate calculation of the input
reflection p; of a feed designed as in [9] can be carried out
using (43), with v{, v, calculated using the asymptotic the-
ory of [11]. Using (43), one can also minimize p, using a
matching transformer as in [9].

If both 6 X and &Y are nonzero, then using (41) one can
verify that in general there is no simple relation between
the reflected amplitude 4_; and the wavenumbers vy, v;.
This implies that the simple relations derived in the follow-
ing section between the reflection and transmission coeffi-
cients p,,t; and the wavenumbers vy,,y/ are valid only
under the particular conditions of Section V.

V. SorutioN WHEN C, , = CC/

We now assume, for all the scattered modes, that the
tangential field components at the boundary have the same
7-dependence of the incident mode. If then either X'= X
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or Y’=Y, one has from Section III that

Cn,1=Cn'Cil Dn,t= --tcn,i (44)
and (38), (39) can be written in the form
R
Y —==0 (45)
n Yn - Yi
R
=T (46)
n Yn + Yz

where n=-1, 1, 2, etc, and R, = AC,, T =
F2A/(e/,h})/C; . The above equations also apply to a
junction characterized by X=Y and X’'=Y", as pointed
out in Appendix IV.

We now assume that the difference v,, — v,, approaches
a finite limit for m — co. Then, (45) and (46) can be solved
as in [3] with the help of the two integrals

1 ¢ f(w)
Fj% dw

47
Lo @)

where D is an infinitely large circle in the complex w-plane
and f(w) is the function

fl@) = h— (48)

with % being a suitable constant.

Taking into account the assumed behavior of v, —¥,,
for m — o0, one can determine as in [3] (see Appendix III)
the behavior of f(w) for |w|— 00, and one finds that the
integrals in (47) vanish. Thus, expressing each integral in
terms of the residues of f(w) and equating the result to
zero, one obtains (45) and (46) with

R—n=ReSf(Yn) T;tl=_f(_77;)
which give?

(49)

o= =
R wtnm=1 (1=v/v)(1+n/v)

(50)

coL 1 (1+ v/ ¥m) A+ 11/ V)
Re yi=vm=1 (14 %/%)(1+ 1/ )

(51)

VI. DiscussioN

As pointed out in the introduction, a mode e’, h’” speci-
fies a direction in the Hilbert space II. Of general interest
in the theory of scattering and radiation in waveguides is
the problem of determining the components of a vector &
in the direction of a given mode. For the electromagnetic-
field distribution produced by E, H over the plane z =0,

2We use the notation I to indicate omission of the factor with
m=n.
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we have shown that the vector

é”=[15], forz=0

has the component

sgsof]

in the direction of &, b’. In the special case where E, H is
characterized by d/dz = —y we have reduced the surface
integrals (E, h’) and (e’, H) to contour integrals. An im-
portant application arises in the theory of diffraction. If,
for instance, the plane z = 0 is the aperture of a horn and
E, H represents one of the modes of the horn, then letting
e’, i’ be a plane wave, on¢ obtains from (52) the far-field
amplitude radiated in the direction of e’, A’

The coupling coefficient between two modes is given by

(e,n’)+(e’, h)

which vanishes for y’+# vy when the two modes satisfy the
same boundary conditions. This important property ap-
plies even when either mode is obtained from the other
through a reversal of the propagation direction as in (14),
in which case y’= — vy and the coefficients (e, k"), (e’, h)
do not vanish. Direct consequences of the above property
are (35), (36), from which (38), (39) directly followed.

If the two modes do not satisfy the same boundary
conditions, then their coupling coefficient does not vanish
and a simple relation, (18), exists between the above coeffi-
cient and the wavenumbers of the two modes. For certain
waveguides, the coefficients D and C in (9), (15) are
separable

Cn,z = qu,

and then an exact solution of (38), (39) was obtained in
Section V. The above condition is satisfied in two im-
portant cases: in a circular waveguide with transverse
corrugations causing X’= X=0, and in a rectangular
waveguide with corrugations on only two walls. The wave-
numbers v, and vy, in these two cases can be derived as in
Appendix II, where it is shown that if both ¥ and Y’ are
nonzero the difference vy, — v, approaches a finite limit for
n-—oco. If, instead, either Y or Y’ is zero, then the
limit vanishes. In either case, one obtains the solution of
Section V.

Of greatest interest is the reflection coefficient p; which
can be minimized using a matching section as in [9]. If only
the first s modes corresponding to v;,---,y, propagate,
then in (50) for n=1 the factors with m > s have unit
magnitude. In fact, it is shown in Appendix I that in
general the cutoff modes can be divided into two groups:
in one group all y, are real and, in the other, the modes
can be ordered so that vy, = v¥ ;. Taking this into account

-1 (1=-/7.) 0+ %/,
Wtnm=2 1=1/%.)1+n/7,)

which involves only the propagating modes (with imagin-

lod =
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ary v,). If only one mode propagates, as in [1], then

N
Yit+n

and therefore in this case the perturbation analysis of
Section IV gives exactly the magnitude of p;.

Of greatest importance in practice is the case where
X’'—X=0 and Y’~7Y is small. Then, y, =1, and from
(50), (51) one obtains the expressions derived in Section IV
or in [1]. Another important case arises when both Y and
Y’ are large. Then v,, and v, differ little from the values
obtained for Y,Y’— o0, and they can be determined as
shown in Appendix II.

Notice, in the case of a rectangular boundary, that the
exact derivation of Section V does not apply to the wave-
guide of [10] with all four walls corrugated, since then the
junciion violates the condition C, , = C,C;. The perturba-
tion analysis of Section IV shows, however, that (50), (51)
are approximately valid also in this case, provided Y'~Y
is small.

lo1l =

APPENDIX 1

Coupling Between Conjugate Modes in a Lossless Waveguide

In the treatment of scattering or radiation in waveguides,
the coupling coefficient between two modes is usually
expressed in terms of an integral involving the components
of one mode multiplied by the complex conjugate compo-
nents of the other mode.

In our definition, instead, the coupling coefficient is
given by the symmetric expression (e, #")+(e’, k), which
does not involve complex conjugate components. An objec-
tion which may be raised to this definition is that some of
the modes may be characterized by (e, h)=0, if vy is
degenerate. In a circular waveguide, for instance, (e, /) =0
for the modes with ¢-dependence given by

etime,

However, these modes can always be expressed in terms of
the modes with ¢-dependence given by

cosmo sin m¢
which satisfy the condition (e, k) # 0. One can show that
in general, by requiring

(e, h,)+(e;h,)=0, fori+k

one guarantees (e,, fi,) # 0.

If the medium is lossless, it was pointed out in Section
IIT that expressions similar to (15)—(23) can be derived by
replacing E’, H’ in (7) with the complex conjugates of
E’, — H’. One then obtains from (17) the coefficient (e, h"*)
used in [1]. In the perturbation analysis of [1], use of
(e, k™) in place of (e, k’) did not cause difficulties because
consideration was restricted in [1] to the modes with real
values of y”* and y2. In the present article, since complex
values of y”* and y? are considered, a more appropriate
definition is given by (e, k).
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It was shown in [1] that

ok

’ Y ' g , A
(e, h *) = _.____.‘Y/*z — Y2 f(e'rhz* + er*hz)‘d'r
t *—zy_;? 95 (e,h2* +e*n,)dr. (53)
c .

This basw result was derived in [1] assuming that both y?2
and vy are real, but that derivation apphes w1thout mod-
ifications also for complex values of y2 and y”™*

Equation (17) can be derived directly from (53) by
applying to E’, H’ the transformation

7% 1% *
zs_h Y .

e h/ e hI,Y ___)e/* _h/*
22"z

(54)

One can verify that the result, which will be called the
conjugate mode of E’, H’, satisfies Maxwell’s equations.
Notice that if the boundary is lossless so that the param-

eters X’, Y’ are real, then the conjugate mode satisfies the .

same boundary conditions of E’, H’. Then, in either one of
the two waveguides of Fig. 1, the modes with complex
values of v”* (or y2) can be grouped as in Section VI into
pairs of conjugate modes, related by the transformation
(54).

Also notice that the propagation constant y of a mode is
not affected by the above transformation if vy is real. Thus,
for a nondegenerate mode e, h with real vy, the transforma-
tion (54) is equivalent to multiplication of e, & by a con-
stant factor A of unit amplitude. If instead y is imaginary,
the sign of vy is changed and the transformation (54) is
equivalent to multiplication of e,— h by A. We conclude
that by properly choosing the mode amphtude so that
A=1 one w1]l obtain

e,=eX h,=7Th}
depending on whether y, is real or imaginary. In the
former case, the mode does not carry real power, since

(e, h*) is imaginary. In the latter case (e, &) is real, and
(e, b) # 0, as pointed out in Section IIL If y is complex

(e, h*)=0

as can be seen from (53) by letting X, Y — X', Y’ for n=i.

APPENDIX I1

Circular and Rectangular Waveguides

As a first application of the-results of Section V, con-
sider in Fig. 2 a circular waveguide of radius a, let the
boundary parameters X, Y and X', Y’ be independent of
¢, and assume the medium inside the boundary is homoge-
neous and lossless. Then, the coefficients C, ; are separable
as in Section V if X=X’ or Y=Y’ or both X=Y and
X’=Y’. Here, we consider the special case

X=Xx'=0

which corresponds to a corrugated waveguide, and assume
E, for the incident mode has ¢-dependence given by cos ¢.
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P

1

N

X=0, Y #®

X=0, Y#®©
. a
X=0, Y=®
Fig. 2. Rectangular and circular boundaries.

Then, for each mode for z < 0 one has
E,= ch(,u—:;) cos pe” Y (55)
ZH, = dJl(u%) singe™ (56)

where Z=

B (ya)>=u?—(ka):, and r?=x2 + y2.
Then (10), (19), and (20) for X’ — X =0 give
Cn,i=_Nn,i=j7ra(Y,—Y)anaz{ (57)
where a,, is determined by the nth values of ¢ and u
a = Jl(u )

and smularly for aj. The charactensuc equations which
determine u,, and ¢ /d can be written in the form [1], [2]

u? ka JY
=\
1_ 2 (X_kad
G Jya Z u J;

where G = d /c. Notice here we are assuming X = 0.

We now derive u,, when either m or Y are large and
show that the difference ym ~¥,, dpproaches a finite limit
for m— o0 as assumed in Sectlon V.. From the above
relations for X=0

~ - jF(u) 2 (58)
where
F(u)—u‘zgu; (59)
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and
(va)’ =u? ~ (ka)’. (60)

Furthermore, the characteristic equation which determines
the eigenvalues u, can be written in the form

T, () =2F(u) (61)
where
T, ( )—E + ( 2) 4 (ka) = u? (62)
u u a (k )
For
¥Z|> 7 (63)

T, (u) is a real valued function of u and the eigenvalues «,,
are all real. For YZu?/ka —

YZ 2\ (Ve
T —>2(—-—~u) [(ka) 1]
T+—>21u

2
2, (65)
Therefore, the eigenvalues determined by 7_ are given by
2_ 2
u,=da,|l1+ (ka) —a, 1 (66)
YZkaa?, (a2 -1)

where a,, is one of the roots of J/(u). Since G =0, the
corresponding modes are approximately of the TE type.
For the modes determined by T,

and

ka

b (1+ YZ52 ) (67)
where b,, is one of the roots of J;(u) and, since G = oo,
these modes are of the TM type. Using the above expres-
sions, one can determine straightforwardly the eigenvalues
u,, if Y is large, or if Y is finite but u,, is large. In the
latter case of large u,,, taking into account the asymptotic
behavior of a,, and b,, for large m, (66) and (67) give

m T
umzmi-i-z (m=1,2,~--) (68)

which for m odd gives the roots of Jl(u) and for m even,
the roots of J;(u).
If
V)<= (69)
ka

then T, (u) becomes complex for £ < u? < £2, where
2 -
8= —— 171 (Yka)’]
(Yz)
since the radical in (62) vanishes for u?=£¢2 For YZ =0
£ = (ka)’ (71)

in which case the real solutions of (61) are characterized by
u < ka.

(70)

2:

(64)
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Finally, consider the case Y= 0. Then, from (58)—(62)
one has G= 11 and

- =z1. 72
V(ka)* - u? Jy(u) &
For large values of u
J7 3
- tan(u—zﬂ) (13)
and therefore (72) gives
3 . af 1
Uy = 77+ mat jtanh (ka)' (74)

Rectangular Waveguide

As a second application, consider a hollow rectangular
waveguide. Then, the modes can be expanded in terms of a
finite sum of elementary functions only if the values of
X, Y satisfy suitable conditions® derived by Dydbal e al.
[12]. Here, consideration will be restricted to the case
where X=1/Y=0 for the two walls orthogonal to the
y-axis (Fig. 2). For the other two walls, we assume X =0
and

1
—}7950

with Y independent of x, y. This accurately represents a
waveguide in which only two walls, those orthogonal to the
x-axis, are corrugated.

Under the above conditions, the modes can be divided
into two groups, characterized, respectively, by E, =0 and
H, = 0. For the latter modes, one can show that the field is
not affected by the value of Y, and therefore only the
former modes will be considered. For the even modes, one
can write

E, —ccos( )cos(ty)e 2 (75)
EZ=—%csm( P )cos(ty)e ¥ (76)

where ¢=(2s+1)m/2b and 2a, 2b are the waveguide
dimensions in the x, y-directions. One then finds that C, ,
is given by (57) with 7a replaced by 25 and a, = c,cosu,.
The characteristic equation which specifies the eigenvalues
can be written in the form

utanu=¢ (77)
where
g4 (kb)—(b)*
b YZkb (78)
If £=0, then ‘
Up=(m-1a (m=1,2,--+) (79)

which also gives the asymptotic behavior for u,, for large

3When these conditions are not satisfied, as in [10], the modes may be
derived by the approximate procedure of [11].
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m when £+ 0. If £=00, then

= (2m=1)7-(m=1,2,--). (80)
Notice that all u,, are real if £ > 0. If £ <0, the eigenvalue
corresponding to m =1 in (79) is imaginary. In Section IV,
the index m =1 was assigned to the incident mode, whereas
(79) assigns the index m =1 to the mode with u =0 for
£ = 0. Thus, the indices of these two modes may have to be
interchanged, in order to conform to the convention of
Section IV. If £ is small, then from (77) for m #1

umz(m—l)'ﬂ', § (m—l)zﬂz

For m=1,u? =1/¢.
APPENDIX 111

Asymptotic Behavior of f(w) for w — o0

First consider the case where both Y and Y’ are non-
zero. Then, taking into account the behavior of u,, for
m — 00, one has

Y~ Ym0, form— o
and from [3] this implies for large
1
flo)——.

If instead either Y or Y’ is zero then vy, —v,, approach a
nonzero limit for m — 00 and from [3]
1
W) >,
f(0)~—=

APPENDIX IV
A hollow waveguide satisfying the condition

E = 72 72 Po

Y €0
has certain interesting properties [13] which are direct
consequence of the invariance of Maxwell’s equations to
the substitution

E-»7ZH ZH--E.

(82)

In general, if X # YZ?, this substitution changes the wave-
guide boundary conditions (2) according to the transforma-
tion X > YZ2 YZ?>- X, but it does not affect a wave-
guide with X =YZ? Such a waveguide, is degenerate, since
each mode is in general transformed by (82) into a differ-
ent mode with the same propagation constant. Thus, if
E =A,ZH = B is a particular solution of Maxwell’s equa-
tions in such a waveguide, then also

E=4A—-aB ZH=aA+B (83)

is a solution, containing an arbitrary parameter a. Clearly,
all solutions can be divided into two groups, obtained from
(83), respectively, for a= j and a= — j. If the transforma-
tion (82) is applied to either group, one finds that the result
is simply multiplication by + j or — j, depending on

(81)
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whether a = j or — j. These considerations apply, not only |

“to a cylindrical waveguide, but in general to any structure

whose boundary conditions are invariant to the trans-
formation (82). Thus, it is interesting to examine the far-
field behavior of a horn having such boundary conditions.
In the far-field, ZH =i, X E, and the transformation (82)
is equivalent to E —i, X E,ZH — —i, X E, simply pro-
ducing a 90° rotation of E, ZH. Furthermore, for a= + j
the far-field is everywhere circularly polarized.

Now consider a junction between two waveguides with
X=YZ? and X’=Y’Z? and let a= j. Then, considera-
tion can be restricted to the modes satisfying the condition

e,=jZh, e/= jZh]. (84)
But according to (30) and (31)
: e,=e_, h,=—-h_, (85)

which implies the following. Let the indexes for the modes
in the two waveguides be chosen so that e, —> e/, h, — h;]
for X', Y’ > X,Y and consider a particular mode produced
for z> 0. Then e/, k] satisfies condition (84) but, because
of (85), condition (84) is violated by the corresponding
reflected mode e, h, with n = —i. Thus, the correspond-
ing reflection coefficient is zero; in particular, p; = 0. Next,
consider one of the modes e/, h; which violate condition
(84). Such a mode is not excited for z > 0, but the corre-
sponding mode e,, h, with n= —i is reflected for z <0,
because it satisfies condition (80).

Finally, consider a junction between two circular wave-
guides with X=YZ? X’=Y’Z2 Then, in (38) and (39)
for n> 0 one has either

or
‘Dn,z = 2Mn,i = 2MnM"

The first case arises when e, and e/ have the same « and,
the latter case, when they have different «. The opposite is
true for n < 0. Taking this into account one finds that (38)
and (39) can be reduced to the form of (45) and (46).
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High-Temperature Microwave
Characterization of Dielectric Rods

JOSE C. ARANETA, MEMBER, 1EEE, MORRIS E. BRODWIN, SENIOR MEMBER, IEEE,
AND GREGORY A. KRIEGSMANN

Abstract —A technique for the simultaneous heating and characteriza-
tion of dielectric rods using a single microwave source is described. The
rod is heated in a rectangular cavity excited by an iris. A variational model
for the impedances of homogeneous rods used in the characterization
procedure is discussed. It is accurate regardless of the diameter of the rod,
even at resonance. Experimental results of B-Al,O; are presented.

I. INTRODUCTION

HE CHARACTERIZATION technique to be de-

scribed is unique in allowing the simultaneous heating
and characterization of a dielectric rod while using a single
microwave generator. An earlier technique utilized two
microwave sources [1].

The inherent speed of microwave heating can result in a
significant amount of energy savings and greater through-
put of heat- treated rods as compared to conventional heat-
ing.

In sintering ceramic rods, the speed of microwave heat-
ing makes it possible to discriminate against deleterious
slow diffusion processes associated with grain growth [2],
(3.

The technique is partlcularly suitable for processmg
high-technology ceramics such as 8-Al,QOs, a solid electro-
Iyte used in high-energy density batteries. It can also be
used to sinter and characterize high-permittivity ceramics
as well as piezoelectric ceramics and ferrites.
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In situ characterization while sintering provides insight
into sintering dynamics without the disadvantages of elec-
trodes.

The applicator used to heat and characterize the rod is a
rectangular cavity excited by an iris. The rod is mounted in
the cavity parallel to the electric-field vector. The dielectric
constant and electric conductivity of the rod are deduced
by equating the measured admittance of the cavity with the
inserted rod with the corresponding admittance derived
from the equivalent-circuit representation.

An accurate equivalent circuit representation of the rod
is therefore necessary. Marcuvitz [4] gave a variational
model for the rod which is accurate only when the rod is
very thin compared to the wavelength. It is also invalid
near “resonance.” Nielsen [5] described a numerical tech-
nique which eliminates the limitation on the diameter of
the rod. Although Nielsen’s method shows an improved
representation near resonance, it too suffers a similar de-
ficiency. These models are valid only when the rod is
homogeneous, i.e., the electric conductivity and dielectric
constant are uniform throughout the rod.

An improved variational model is presented in Section
IL It is derived from the same variational formulation
attributed to Schwinger [6] that Marcuvitz used. The im-
proved variational model has no restriction on the rod
diameter and also yields accurate results in the region of
resonance. As compared to the numerical technique of
Nielsen [5], the improved variational model is also easier to
implement and converges more rapidly. The improvement
was realized by using higher order approximations to the
variational solution of Schwinger.

The characterization procedure, Section III, involves the
equating of the measured and theoretical admittances. This
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